博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Careercup | Chapter 4
阅读量:6878 次
发布时间:2019-06-26

本文共 6332 字,大约阅读时间需要 21 分钟。

二叉查换树,左孩子小于等于根,右孩子大于根。 

完全二叉树,除最后一层外,每一层上的节点数均达到最大值;在最后一层上只缺少右边的若干结点。 complete binary tree

满二叉树,完美二叉树是全部结点数达到最大的二叉树。perfect binary tree, full binary tree.

平衡二叉树,左右子树的高度在一定范围内。 

二叉查找树(Binary Search Tree),也称二叉搜索树、有序二叉树(ordered binary tree),排序二叉树(sorted binary tree),是指一棵空树或者具有下列性质的二叉树:

  1. 若任意节点的左子树不空,则左子树上所有结点的值均小于或等于它的根结点的值;
  2. 任意节点的右子树不空,则右子树上所有结点的值均大于它的根结点的值;
  3. 任意节点的左、右子树也分别为二叉查找树。
  4. 没有键值相等的节点(no duplicate nodes)。

在二叉查找树删去一个结点,分三种情况讨论:

  • 若*p结点为叶子结点,即PL(左子树)和PR(右子树)均为空树。由于删去叶子结点不破坏整棵树的结构,则只需修改其双亲结点的指针即可。
  • 若*p结点只有左子树PL或右子树PR,此时只要令PL或PR直接成为其双亲结点*f的左子树(当*p是左子树)或右子树(当*p是右子树)即可,作此修改也不破坏二叉查找树的特性。
  • 若*p结点的左子树和右子树均不空。在删去*p之后,为保持其它元素之间的相对位置不变,可按中序遍历保持有序进行调整,可以有两种做法:其一是令*p的左子树为*f的左/右(依*p是*f的左子树还是右子树而定)子树,*s为*p左子树的最右下的结点,而*p的右子树为*s的右子树;其二是令*p的直接前驱(in-order predecessor)或直接后继(in-order successor)替代*p,然后再从二叉查找树中删去它的直接前驱(或直接后继)。

4.1 Implement a function to check if a binary tree is balanced. For the purposes of this question, a balanced tree is defined to be a tree such that the heights of the two subtrees of any node never differ by more than one.

点。

4.2 Given a directed graph, design an algorithm to find out whether there is a route between two nodes.

BFS或者DFS就行了,不过BFS可以避免在单条路径上挖得太深。

4.3 Given a sorted (increasing order) array with unique integer elements, write an algorithm to create a binary search tree with minimal height

点。

4.4 Given a binary tree, design an algorithm which creates a linked list of all the nodes at each depth (e.g., if you have a tree with depth D, you'll have D linked lists).

BFS或者DFS都可以。注意的是,DFS虽然会用额外的O(lgn)的栈空间,但是整体的空间复杂度还是O(n)。

4.5 Implement a function to check if a binary tree is a binary search tree.

点。BST要和中序遍历联系在一起。

4.6  Write an algorithm to find the 'next'node (i.e., in-order successor) of a given node in a binary search tree. You may assume that each node has a link to its parent.

如果有root结点,直接用中序遍历记录pre结点就可以做的。如果只有结点,那么需要分情况。

4.7 Design an algorithm and write code to find the first common ancestor of two nodes in a binary tree. Avoid storing additional nodes in a data structure. NOTE: This is not necessarily a binary search tree.

leetcode上的博文,讲得很仔细。这道题很经典,尤其是有parent结点时的解法,类似求intersect linklist的交叉点。

4.8 You have two very large binary trees: Tl, with millions of nodes, and T2, with hundreds of nodes. Create an algorithm to decide if T2 is a subtree of Tl. A tree T2 is a subtree of Tl if there exists a node n in Tl such that the subtree of n is identical to T2. That is, if you cut off the tree at node n, the two trees would be identical.

这道题可以穷搜,也可以基于pre-order和in-order的travesal串,用子串查找。

4.9 You are given a binary tree in which each node contains a value. Design an algorithm to print all paths which sum to a given value. The path does not need to start or end at the root or a leaf.

只能穷搜了。

1 struct TreeNode {  2     TreeNode *left;  3     TreeNode *right;  4     TreeNode *parent;  5     int val;  6     TreeNode(int v):val(v),left(NULL),right(NULL),parent(NULL) {}  7 };  8   9 // 4.6 10 TreeNode* findInorderNext(TreeNode* node) { 11     if (node == NULL) { 12         return NULL; 13     } else if (node->right) { 14         node = node->right; 15         while (node->left) node = node->left; 16         return node; 17     } else { 18         while (node->parent && node->parent->left != node) node = node->parent; 19         return node->parent; 20     } 21 } 22  23 TreeNode* findPreordeNext(TreeNode* node) { 24     if (node == NULL) { 25         return NULL; 26     } else if (node->left) { 27         return node->left; 28     } else if (node->right) { 29         return node->right; 30     } else { 31         while (node->parent && node->parent->right == node) { 32             node = node->parent; 33         } 34         if (node->parent) return node->parent->right; 35         else return NULL; 36     } 37 } 38  39 TreeNode* findPostorderNext(TreeNode* node) { 40     if (node == NULL || node->parent == NULL) { 41         return NULL; 42     } else if (node->parent->right == node || node->parent->right == NULL) { // right subtree 43         return node->parent; 44     } else { 45         node = node->parent->right; 46         while (node->left) node = node->left; 47         return node; 48     } 49 } 50  51  52 // 4.7 (1) p, q in the BST, O(h) runtime 53 TreeNode* LCAInBST(TreeNode *root, TreeNode *p, TreeNode *q) { 54     if (!root || !p || !q) return NULL; 55     if (max(p->val, q->val) < root->val) { 56         return LCAInBST(root->left, p, q); 57     } else if (min(p->val, q->val) > root->val) { 58         return LCAInBST(root->right, p, q); 59     } else { 60         return root; 61     } 62 } 63  64 // 4.7 (2.1) p, q may not in the tree, this is just a binary tree 65 int matchCount(bool pExisted, bool qExisted) { 66     int m = 0; 67     if (pExisted) m++; 68     if (qExisted) m++; 69     return m; 70 } 71 TreeNode* LCAInBT(TreeNode *root, TreeNode *p, TreeNode *q, bool &pExisted, bool &qExisted) { 72     if (!root) return NULL; 73  74     TreeNode* ret = LCAInBT(root->left, p, q, pExisted, qExisted); 75     int lm = matchCount(pExisted, qExisted); 76     if (lm == 2) return ret; // p, q are in the left subtree 77     ret = LCAInBT(root->right, p, q, pExisted, qExisted); 78     int rm = matchCount(pExisted, qExisted); 79     if (rm == 2) { // p, q are found 80         if (lm == 1) return root; //p, q are in different subtree, thus return root 81         else return ret; // lm == 0, p, q are in the right subtree 82     } 83     if (root == p) pExisted = true; 84     if (root == q) qExisted = true; 85     if (pExisted && qExisted) return root; // if q is a child of q (or, q is a child of p) 86     return NULL; // if p or q is not existed  87 } 88  89 // 4.7(2.2) the parent node is available 90 int getHeight(TreeNode* p) { 91     int h = 0; 92     while (p) { 93         p = p->parent; 94         h++; 95     } 96     return h; 97 } 98  99 TreeNode* LCAInBT(TreeNode *p, TreeNode *q) {100     if (!p || !q) return NULL;101     int h1 = getHeight(p);102     int h2 = getHeight(q);103     if (h1 > h2) {104         swap(p, q);105         swap(h1, h2);106     }107     for (int i = 0; i < h2 - h1; ++i) {108         q = q->parent;109     }110 111     while (p && q) {112         if (p == q) return p;113         p = p->parent;114         q = q->parent;115     }116     return NULL;117 }

 

转载于:https://www.cnblogs.com/linyx/p/3782607.html

你可能感兴趣的文章
Mobile Web中URL设计问题
查看>>
core Animation之CAAnimationGroup(动画群组)
查看>>
重构实践:体验interface的威力(一)
查看>>
UILabel混合显示动画效果
查看>>
Java内存泄露
查看>>
窥探Swift编程之强大的Switch
查看>>
R语言学习路线图-转帖
查看>>
【导入导出】sqlldr 导入含有内嵌换行符的数据
查看>>
Linux中常用命令
查看>>
RDS最佳实践(四)—如何处理Mysql的子查询
查看>>
最大流:Dinic模板
查看>>
安卓开发中个人能力的进阶进程
查看>>
人工智能10年将有颠覆性改变
查看>>
探秘AOP实现原理
查看>>
单点登录(SSO)简介
查看>>
2018最新大数据学习路线分享
查看>>
利用SVG制作不规矩背景的链接导航
查看>>
Linux - 一次运行多个命令
查看>>
10.C# -- 函数参数,参数数组,值传递函数,引用传递函数,输出函数,无参函数...
查看>>
BT5设置ip地址
查看>>